Schubert Calculus Day 2: Schubert classes and Schur polynomials

Quang Dao

May 2021

Quang Dao

Schubert Calculus Day 2: Schubert class

2 Ring Structure of $H^*(Gr(k, n))$

Review

Yesterday, we defined the Grassmannian Gr(k, n) which parametrizes k-subspaces of n-dim space. It has a stratification into Schubert cells

$$\operatorname{Gr}(k,n) = \bigsqcup_{\lambda \subset (k^{n-k})} \Omega^{\circ}_{\lambda}(\mathcal{F}),$$

where \mathcal{F} is any complete flag. A partition $\lambda = (\lambda_1, \dots, \lambda_k)$ determines a position $p_{\lambda} = (n - k + 1 - \lambda_1, n - k + 2 - \lambda_2, \dots, n - \lambda_k)$ and

$$\Omega^{\circ}_{\lambda}(\mathcal{F}) = \{ U \in Gr(k, n) \mid \dim(U \cap F_j) = i \text{ for } p_i \leqslant j < p_{i+1} \}.$$

The cohomology ring $H^*(Gr(k, n))$ is generated in even degrees by the class $\sigma_{\lambda} = [\Omega_{\lambda}(\mathcal{F})]$ of the Schubert varieties. Here $\sigma_{\lambda} \in H^{2|\lambda|}(Gr(k, n))$ and is independent of the choice of flag.

Schubert Varieties for Gr(2, 4)

Think of Gr(2,4) as parametrizing lines in \mathbb{P}^3 . Fix a flag $p \subset \ell \subset H$ in \mathbb{P}^3 .

 $\Omega_{(1,1)} = \{ \Lambda \mid \Lambda \subset H \}$ $\Omega_{(0,0)} = \{ \Lambda \mid \Lambda \cap H \neq \emptyset \}$ $=\left\{ \begin{pmatrix} * & 1 & 0 & 0 \\ * & 0 & 1 & 0 \end{pmatrix} \right\}$ $= \left\{ \begin{pmatrix} * & * & 1 & 0 \\ * & * & 0 & 1 \end{pmatrix} \right\}$ $\Omega_{(2,1)} = \{ \Lambda \mid p \in \Lambda \subset H \}$ $\Omega_{(1,0)} = \{ \Lambda \mid \Lambda \cap \ell \neq \emptyset \}$ $= \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & 1 & 0 \end{pmatrix} \right\}$ $= \left\{ \begin{pmatrix} * & 1 & \boxed{0} & 0 \\ * & 0 & * & 1 \end{pmatrix} \right\}$ $\Omega_{(2,0)} = \{ \Lambda \mid p \in \Lambda \}$ $\Omega_{(2,2)} = \{ \Lambda \mid \Lambda = \ell \}$ $= \left\{ \begin{pmatrix} 1 & \left\lfloor 0 \right\rfloor & \left\lfloor 0 \right\rfloor & 0 \\ 0 & * & * & 1 \end{pmatrix} \right\}$ $=\left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \right\}$

From Cohomology to Point Counting

Let X be a nonsingular projective variety over \mathbb{C} , and let V, W be two subvarieties of X. Let Z_1, \ldots, Z_n be the irreducible components of $V \cap W$.

Question

What does the cup product $[V] \cdot [W]$ actually mean?

In "nice" situations, it will turn out to be exactly $[Z_1] + \cdots + [Z_n]$.

Definition

Let X, V, W, Z_i be as above. We call the intersection $V \cap W$ proper if $\operatorname{codim}(Z_i) = \operatorname{codim}(V) + \operatorname{codim}(W)$ for all *i*. We call the intersection *(generically) transverse* if for each *i*, we have an open Zariski subset of Z_i such that for all *z* in that open subset,

$$T_z Z_i = T_z V \cap T_z W.$$

From Cohomology to Point Counting

Theorem

If V intersects W transversely, then $[V] \cdot [W] = [Z_1] + \cdots + [Z_n]$. If their intersection is only proper, then $[V] \cdot [W] = m_1[Z_1] + \cdots + m_n[Z_n]$ for some multiplicities m_i .

Thus in our Schubert calculus problems, it is essential that the intersection of Schubert varieties are transverse.

Theorem (Kleiman's transversality)

Suppose that an algebraic group G acts transitively on a variety X over \mathbb{C} , and $A \subset X$ is a subvariety.

a) If $B \subset X$ is another subvariety, then there is an open dense set of

 $g \in G$ such that gA is generically transverse to B.

b) If G is affine, then [gA] = [A] in $H^*(X)$ for any $g \in G$.

Intersection in Complementary Dimensions

Consider two partitions $\lambda, \mu \subset (k^{n-k})$ with $|\lambda| + |\mu| = k(n-k)$. We call them *complementary* if $\lambda_i + \mu_{k+1-i} = n - k$ for all $1 \leq i \leq k$. In other words, λ and μ complement each other in the $k \times (n-k)$ rectangle.

Theorem

Let λ and μ be as above, and \mathcal{F} , $\widetilde{\mathcal{F}}$ be opposite flags. Then the Schubert varieties $\Omega_{\lambda}(\mathcal{F})$ and $\Omega_{\mu}(\widetilde{\mathcal{F}})$ intersect transversely at a unique point if $\lambda_i + \mu_{k+1-i} = n - k$ for all *i*, and are disjoint otherwise.

Corollary

We have

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \begin{cases} 1 & \text{ if } \lambda \text{ and } \mu \text{ are complementary,} \\ 0 & \text{ otherwise.} \end{cases}$$

Intersection in Complementary Dimensions

Proof.

For $U \in \Omega_{\lambda}(\mathcal{F}) \cap \Omega_{\mu}(\widetilde{\mathcal{F}})$, the dimension conditions are

$$\begin{cases} \dim(U \cap F_{n-k+i-\lambda_i}) \ge i \text{ for all } i \\ \dim(U \cap \widetilde{F}_{n-k+i-\mu_i}) \ge i \text{ for all } i \end{cases}$$

We then combine the first condition for i and the second condition for k+1-i to get

$$\dim(U\cap \mathcal{F}_{n-k+i-\lambda_i}) + \dim(U\cap \widetilde{\mathcal{F}}_{n-k+(k+1-i)-\mu_{k+1-i}}) \geqslant k+1.$$

Since dim(U) = k, we must have dim($F_{n-k+i-\lambda_i} \cap \widetilde{F}_{n+1-i-\mu_{k+1-i}}$) ≥ 1 . Because $\mathcal{F}, \widetilde{\mathcal{F}}$ are transverse flags, this translates to $\lambda_i + \mu_{k+1-i} \leq n-k$ for all *i*. Since $|\lambda| + |\mu| < k(n-k)$, equality must happen for all *i*.

Intersection in Complementary Dimensions

What is the unique point of intersection?

$$\left\{ \begin{pmatrix} 1 & \boxed{0} & 0 & \boxed{0} \\ 0 & * & 1 & \boxed{0} \end{pmatrix} \right\} \cap \overline{\left\{ \begin{pmatrix} 1 & * & 0 & * \\ 0 & \boxed{0} & 1 & * \end{pmatrix} \right\}} = \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\}.$$

Given a partition λ , a *horizontal strip* of length b for λ is a way to attach b more boxes to its Young diagram such that

- the result Young diagram is still a partition, and
- no two added boxes are in the same column.

If we call the resulting partition μ , then this is equivalent to saying that $\mu \supset \lambda$, $|\mu| = |\lambda| + b$ and $\lambda_i \leqslant \mu_i \leqslant \lambda_{i-1}$ for all *i*.

Theorem (Pieri's Rule)

For any $b \leq k$ and any partition $\lambda \subset (k^{n-k})$, we have

$$\sigma_b \cdot \sigma_\lambda = \sum_{\mu = \lambda + (\text{horizontal strip of length } b)} \sigma_\mu.$$

Proof

It suffices to show that for any partition μ with $|\mu| = |\lambda| + b$, we have

$$\sigma_b \sigma_\lambda \sigma_{\mathsf{comp}(\mu)} = \begin{cases} 1 & \text{ if } \mu = \lambda + (\text{horizontal strip of length } b), \\ 0 & \text{ otherwise.} \end{cases}$$

Here $\operatorname{comp}(\mu)$ denotes the complementary partition to μ . This further reduces to showing that for a pair of opposite flags \mathcal{F} , $\widetilde{\mathcal{F}}$, and a general flag \mathcal{V} , $\Omega_{\lambda}(\mathcal{F})$, $\Omega_{b}(\mathcal{U})$ and $\Omega_{\operatorname{comp}(\mu)}(\widetilde{\mathcal{F}})$ intersect at exactly 1 point if $\lambda_{i} \leq \mu_{i} \leq \lambda_{i-1}$, and are disjoint otherwise. Assume that their intersection is non-empty. Since $\Omega_{\lambda}(\mathcal{F}) \cap \Omega_{\operatorname{comp}(\mu)}(\widetilde{\mathcal{F}}) \neq \emptyset$, a similar reasoning to the previous Theorem shows that $\lambda_{i} + \operatorname{comp}(\mu)_{k+1-i} \leq n-k$ for all *i*. This is equivalent to $\lambda_{i} \leq \mu_{i}$.

Proof (continued)

The harder direction is to show that $\mu_i \leq \lambda_{i-1}$. Recall that the Schubert conditions are

$$\Omega_{\lambda}(\mathcal{F}) = \{ \Lambda \mid \dim(\Lambda \cap \mathcal{F}_{n-k+i-\lambda_i}) \geqslant i \text{ for all } i \},\$$

$$\Omega_{\mathsf{comp}(\mu)}(\widetilde{F}) = \{ \Lambda \mid \mathsf{dim}(\Lambda \cap \widetilde{F}_{i+\mu_{k+1-i}}) \geqslant i ext{ for all } i.$$

Let $C_i = F_{n-k+i-\lambda_i} \cap \widetilde{F}_{k+1-i+\mu_i}$, so either dim $(C_i) = \mu_i - \lambda_i + 1$ for all *i*. Then the dimension conditions imply that if $\Lambda \in \Omega_{\lambda}(\mathcal{F}) \cap \Omega_{\text{comp}(\mu)}(\widetilde{F})$, then $\Lambda \cap C_i \neq 0$ for all *i*. Let $C = \text{span}(C_1, \ldots, C_k)$. A simple calculation shows that

$$\dim(C)\leqslant \sum_{i=1}^k\dim(C_i)=\sum_{i=1}^k(c_i-a_i+1)=k+b.$$

Proof (continued)

We now use the description of $\Omega_b(\mathcal{U})$ as the set of k-planes meeting a general subspace $U = U_{n-k+1-b}$. If Λ is in the triple intersection then we need $C \cap U \neq \emptyset$. Since U is general, we need dim $(C) \ge k + b$. Hence equality must occur, which implies that C_1, \ldots, C_k are linearly independent. It is then a short check to show that this implies $\mu_i \le \lambda_{i-1}$ for all *i*.

Giambelli's Formula

Theorem

For a partition
$$\lambda = (\lambda_1, \dots, \lambda_r) \subset (k^{n-k})$$
, we have

$$\sigma_{\lambda} = \det \left(\sigma_{\lambda_i + j - i} \right)_{1 \leqslant i, j \leqslant r}.$$

Here $\sigma_a = 0$ if a < 0.

Corollary

 $H^{2*}(Gr(k, n))$ is generated by the Schubert classes $\sigma_1, \ldots, \sigma_k$.

This is a direct consequence of Pieri's rule (plus induction and lots of cancellations).

Giambelli's Formula

For
$$r = 2$$
 and $\lambda = (a, b)$:

$$\det \begin{pmatrix} \sigma_a & \sigma_{a+1} \\ \sigma_{b-1} & \sigma_b \end{pmatrix} = \sigma_a \sigma_b - \sigma_{b-1} \sigma_{a+1}$$
$$= (\sigma_{a+b} + \sigma_{a+b-1,1} + \dots + \sigma_{a,b})$$
$$- (\sigma_{a+b} + \dots + \sigma_{a+1,b-1})$$
$$= \sigma_{a,b}.$$

For r = 3 and $\lambda = (a, b, c)$:

$$\det \begin{pmatrix} \sigma_{a} & \sigma_{a+1} & \sigma_{a+2} \\ \sigma_{b-1} & \sigma_{b} & \sigma_{b+1} \\ \sigma_{c-2} & \sigma_{c-1} & \sigma_{c} \end{pmatrix} = \sigma_{a} \sigma_{b,c} - \sigma_{b-1} \sigma_{a+1,c} + \sigma_{c-2} \sigma_{a+1,b+1}$$
$$= \dots$$
$$= \sigma_{a,b,c}.$$

Back to the Motivating Problem

Question

Given four lines ℓ_1,\ldots,ℓ_4 in \mathbb{P}^3 in general position, how many lines intersect all four?

Now that we know Pieri's rule, we can compute

$$\sigma_1^4 = (\sigma_{2,0} + \sigma_{1,1})^2 = \sigma_{2,2} + \sigma_{2,2} = 2\sigma_{2,2}.$$

Hence the answer is 2. We will sketch another proof that does not use Schubert calculus.

Lemma

Given a point p and two lines ℓ_1, ℓ_2 in \mathbb{P}^3 in general position. Then there exists a unique line through p that intersect both ℓ_1 and ℓ_2 .

For the proof, pick a general plane H and projects ℓ_1, ℓ_2 onto it from p. Connect p with the point of intersection on H to get the desired line.

Quang Dao

Schubert Calculus Day 2: Schubert class

May 2021 16 / 21

Lines Intersecting Four Other Lines

Figure: Figure 3.8 in "3264 and all that"

For each point $p \in \ell_3$, let M_p be the unique line passing through p and intersect both ℓ_1 and ℓ_2 . Let $Q = \bigcup_p M_p$.

Key Fact

The lines M_p are disjoint, and Q is a quadric surface.

Thus, the fourth general line ℓ_4 will intersect Q at two points, corresponding to two lines M_p, M_q .

A Generalization

Question

Given four smooth curves C_1, \ldots, C_4 in \mathbb{P}^3 of degree d_1, \ldots, d_4 respectively and in general position, how many lines intersect all four curves?

The proof is similar to the previous problem. For a curve C in \mathbb{P}^3 , let

$$\Gamma_{C} = \{\ell \in Gr(2,4) \mid \ell \cap C \neq \emptyset\}.$$

We can show that this is a subvariety of Gr(2, 4) of codimension 1, so $[\Gamma_C] = d\sigma_1$ for some integer *d*. To determine *d*, we use the *method of undertermined coefficients*. In other words, we multiply

$$[\Gamma_C]\sigma_{2,1} = d\sigma_1\sigma_{2,1} = d\sigma_{2,2}.$$

Hence *d* is the number of points in the intersection $\Gamma_C \cap \Omega_{2,1}(\mathcal{F})$, assuming it is transverse. This can be computed to be deg(*C*).

A Generalization

Question

Given four smooth curves C_1, \ldots, C_4 in \mathbb{P}^3 of degree d_1, \ldots, d_4 respectively and in general position, how many lines intersect all four curves?

Hence the intersection number is

$$\prod_i [\Gamma_{C_i}] = 2d_1d_2d_3d_4.$$

Littlewood-Richardson Rule

For general partitions $\lambda, \mu \subset (k^{n-k})$, the product $\sigma_{\lambda} \cdot \sigma_{\mu}$ is a linear combination of $\{\sigma_{\nu} \mid |\nu| = |\lambda| + |\mu|\}$. In other words,

$$\sigma_{\lambda}\sigma_{\mu} = \sum_{|\nu| = |\lambda| + |\mathbf{n}\mathbf{u}|} c_{\lambda\mu}^{\nu} \sigma_{\nu}$$

for some integers $c_{\lambda\mu}^{\nu}$.

Question

Is there an algorithm/combinatorial formula to compute these coefficient?

The answer to this question is the *Littlewood-Richardson rule*, and requires us to take a detour into the world of symmetric polynomials and Young tableaux.

References

- Sara Billey. "Tutorial on Schubert Varieties and Schubert Calculus". In: (2013).
- David Eisenbud and Joe Harris. 3264 and all that A second course in algebraic geometry. Cambridge University Press, 2016.
- William Fulton. Young tableaux: with applications to representation theory and geometry. 35. Cambridge University Press, 1997.
 Jake Levinson. "Schubert Calculus Mini-Course". In: (2014). Available
 - at https://levjake.wordpress.com/2014/07/08/schubert-calculus-mini-course/.