Schubert Calculus Day 2: Schubert classes and Schur polynomials

Quang Dao

May 2021
Table of Content

1. Review of Day 1
2. Ring Structure of $H^*(\text{Gr}(k,n))$
3. More Enumerative Geometry
Yesterday, we defined the Grassmannian $\text{Gr}(k, n)$ which parametrizes k-subspaces of n-dim space. It has a stratification into Schubert cells

$$\text{Gr}(k, n) = \bigsqcup_{\lambda \subset (k^{n-k})} \Omega^\circ_\lambda(\mathcal{F}),$$

where \mathcal{F} is any complete flag. A partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ determines a position $p_\lambda = (n - k + 1 - \lambda_1, n - k + 2 - \lambda_2, \ldots, n - \lambda_k)$ and

$$\Omega^\circ_\lambda(\mathcal{F}) = \{ U \in \text{Gr}(k, n) \mid \dim(U \cap F_j) = i \text{ for } p_i \leq j < p_{i+1} \}.$$

The cohomology ring $H^*(\text{Gr}(k, n))$ is generated in even degrees by the class $\sigma_{\lambda} = [\Omega_\lambda(\mathcal{F})]$ of the Schubert varieties. Here $\sigma_{\lambda} \in H^{2|\lambda|}(\text{Gr}(k, n))$ and is independent of the choice of flag.
Think of $\text{Gr}(2, 4)$ as parametrizing lines in \mathbb{P}^3. Fix a flag $p \subset \ell \subset H$ in \mathbb{P}^3.

$\Omega_{(0,0)}$

$$\Omega_{(0,0)} = \{ \Lambda \mid \Lambda \cap H \neq \emptyset \}$$

$$= \left\{ \begin{pmatrix} * & * & 1 & 0 \\ * & * & 0 & 1 \end{pmatrix} \right\}$$

$\Omega_{(1,0)}$

$$\Omega_{(1,0)} = \{ \Lambda \mid \Lambda \cap \ell \neq \emptyset \}$$

$$= \left\{ \begin{pmatrix} * & 1 & 0 & 0 \\ * & 0 & 1 & 0 \end{pmatrix} \right\}$$

$\Omega_{(2,0)}$

$$\Omega_{(2,0)} = \{ \Lambda \mid p \in \Lambda \}$$

$$= \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & 1 & 0 \end{pmatrix} \right\}$$

$\Omega_{(1,1)}$

$$\Omega_{(1,1)} = \{ \Lambda \mid \Lambda \subset H \}$$

$$= \left\{ \begin{pmatrix} * & 1 & 0 & 0 \\ * & 0 & 1 & 0 \end{pmatrix} \right\}$$

$\Omega_{(2,1)}$

$$\Omega_{(2,1)} = \{ \Lambda \mid p \in \Lambda \subset H \}$$

$$= \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & * & 1 & 0 \end{pmatrix} \right\}$$

$\Omega_{(2,2)}$

$$\Omega_{(2,2)} = \{ \Lambda \mid \Lambda = \ell \}$$

$$= \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \right\}$$
Let X be a nonsingular projective variety over \mathbb{C}, and let V, W be two subvarieties of X. Let Z_1, \ldots, Z_n be the irreducible components of $V \cap W$.

Question

What does the cup product $[V] \cdot [W]$ actually mean?

In “nice” situations, it will turn out to be exactly $[Z_1] + \cdots + [Z_n]$.

Definition

Let X, V, W, Z_i be as above. We call the intersection $V \cap W$ proper if $\text{codim}(Z_i) = \text{codim}(V) + \text{codim}(W)$ for all i.

We call the intersection (generically) transverse if for each i, we have an open Zariski subset of Z_i such that for all z in that open subset,

$$T_z Z_i = T_z V \cap T_z W.$$
Theorem

If \(V \) intersects \(W \) transversely, then \([V] \cdot [W] = [Z_1] + \cdots + [Z_n]\).
If their intersection is only proper, then \([V] \cdot [W] = m_1[Z_1] + \cdots + m_n[Z_n]\)
for some multiplicities \(m_i \).

Thus in our Schubert calculus problems, it is essential that the intersection
of Schubert varieties are transverse.

Theorem (Kleiman’s transversality)

Suppose that an algebraic group \(G \) acts transitively on a variety \(X \) over \(\mathbb{C} \),
and \(A \subseteq X \) is a subvariety.

a) If \(B \subseteq X \) is another subvariety, then there is an open dense set of
\(g \in G \) such that \(gA \) is generically transverse to \(B \).
b) If \(G \) is affine, then \([gA] = [A]\) in \(H^*(X) \) for any \(g \in G \).
Intersection in Complementary Dimensions

Consider two partitions $\lambda, \mu \subset (k^{n-k})$ with $|\lambda| + |\mu| = k(n-k)$. We call them complementary if $\lambda_i + \mu_{k+1-i} = n-k$ for all $1 \leq i \leq k$. In other words, λ and μ complement each other in the $k \times (n-k)$ rectangle.

Theorem

Let λ and μ be as above, and F, \tilde{F} be opposite flags. Then the Schubert varieties $\Omega_\lambda(F)$ and $\Omega_\mu(\tilde{F})$ intersect transversely at a unique point if $\lambda_i + \mu_{k+1-i} = n-k$ for all i, and are disjoint otherwise.

Corollary

We have

$$\sigma_\lambda \cdot \sigma_\mu = \begin{cases} 1 & \text{if } \lambda \text{ and } \mu \text{ are complementary}, \\ 0 & \text{otherwise}. \end{cases}$$
Intersection in Complementary Dimensions

Proof.

For $U \in \Omega_\lambda(F) \cap \Omega_\mu(\tilde{F})$, the dimension conditions are

\[
\begin{align*}
\dim(U \cap F_{n-k+i-\lambda_i}) &\geq i \text{ for all } i \\
\dim(U \cap \tilde{F}_{n-k+i-\mu_i}) &\geq i \text{ for all } i
\end{align*}
\]

We then combine the first condition for i and the second condition for $k+1-i$ to get

\[
\dim(U \cap F_{n-k+i-\lambda_i}) + \dim(U \cap \tilde{F}_{n-k+(k+1-i)-\mu_{k+1-i}}) \geq k + 1.
\]

Since $\dim(U) = k$, we must have $\dim(F_{n-k+i-\lambda_i} \cap \tilde{F}_{n+1-i-\mu_{k+1-i}}) \geq 1$.

Because F, \tilde{F} are transverse flags, this translates to $\lambda_i + \mu_{k+1-i} \leq n - k$ for all i. Since $|\lambda| + |\mu| < k(n - k)$, equality must happen for all i. \qed
What is the unique point of intersection?

\[
\begin{align*}
\left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \ast & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \right\} \cap \left\{ \begin{pmatrix} 1 & \ast & 0 & \ast \\ 0 & 0 & 1 & \ast \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \right\} &= \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \right\}.
\end{align*}
\]
Pieri’s Rule

Given a partition \(\lambda \), a \textit{horizontal strip} of length \(b \) for \(\lambda \) is a way to attach \(b \) more boxes to its Young diagram such that

- the result Young diagram is still a partition, and
- no two added boxes are in the same column.

If we call the resulting partition \(\mu \), then this is equivalent to saying that \(\mu \supset \lambda \), \(|\mu| = |\lambda| + b \) and \(\lambda_i \leq \mu_i \leq \lambda_{i-1} \) for all \(i \).

Theorem (Pieri’s Rule)

\[
\sigma_b \cdot \sigma_\lambda = \sum_{\mu = \lambda + (\text{horizontal strip of length } b)} \sigma_\mu.
\]
Pieri’s Rule

Proof

It suffices to show that for any partition μ with $|\mu| = |\lambda| + b$, we have

$$\sigma_b \sigma_\lambda \sigma_{\text{comp}(\mu)} = \begin{cases} 1 & \text{if } \mu = \lambda + \text{(horizontal strip of length } b) , \\ 0 & \text{otherwise.} \end{cases}$$

Here $\text{comp}(\mu)$ denotes the complementary partition to μ. This further reduces to showing that for a pair of opposite flags $\mathcal{F}, \tilde{\mathcal{F}}$, and a general flag \mathcal{V}, $\Omega_\lambda(\mathcal{F}), \Omega_b(\mathcal{U})$ and $\Omega_{\text{comp}(\mu)}(\tilde{\mathcal{F}})$ intersect at exactly 1 point if $\lambda_i \leq \mu_i \leq \lambda_{i-1}$, and are disjoint otherwise.

Assume that their intersection is non-empty. Since $\Omega_\lambda(\mathcal{F}) \cap \Omega_{\text{comp}(\mu)}(\tilde{\mathcal{F}}) \neq \emptyset$, a similar reasoning to the previous Theorem shows that $\lambda_i + \text{comp}(\mu)_{k+1-i} \leq n - k$ for all i. This is equivalent to $\lambda_i \leq \mu_i$.
Pieri’s Rule

Proof (continued)

The harder direction is to show that \(\mu_i \leq \lambda_{i-1} \). Recall that the Schubert conditions are

\[
\Omega_\lambda(F) = \{ \Lambda \mid \dim(\Lambda \cap F_{n-k+i-\lambda_i}) \geq i \text{ for all } i \},
\]

\[
\Omega_{\text{comp}(\mu)}(\bar{F}) = \{ \Lambda \mid \dim(\Lambda \cap \bar{F}_{i+\mu_{k+1-i}}) \geq i \text{ for all } i \}.
\]

Let \(C_i = F_{n-k+i-\lambda_i} \cap \bar{F}_{k+1-i+\mu_i} \), so either \(\dim(C_i) = \mu_i - \lambda_i + 1 \) for all \(i \). Then the dimension conditions imply that if \(\Lambda \in \Omega_\lambda(F) \cap \Omega_{\text{comp}(\mu)}(\bar{F}) \), then \(\Lambda \cap C_i \neq 0 \) for all \(i \). Let \(C = \text{span}(C_1, \ldots, C_k) \). A simple calculation shows that

\[
\dim(C) \leq \sum_{i=1}^{k} \dim(C_i) = \sum_{i=1}^{k} (c_i - a_i + 1) = k + b.
\]
We now use the description of $\Omega_b(U)$ as the set of k-planes meeting a general subspace $U = U_{n-k+1-b}$. If Λ is in the triple intersection then we need $C \cap U \neq \emptyset$. Since U is general, we need $\dim(C) \geq k + b$. Hence equality must occur, which implies that C_1, \ldots, C_k are linearly independent. It is then a short check to show that this implies $\mu_i \leq \lambda_{i-1}$ for all i.
Giambelli’s Formula

Theorem

For a partition \(\lambda = (\lambda_1, \ldots, \lambda_r) \subset (k^{n-k}) \), we have

\[
\sigma_\lambda = \det (\sigma_{\lambda_i+j-i})_{1 \leq i, j \leq r}.
\]

Here \(\sigma_a = 0 \) if \(a < 0 \).

Corollary

\(\text{H}^2(\text{Gr}(k, n)) \) is generated by the Schubert classes \(\sigma_1, \ldots, \sigma_k \).

This is a direct consequence of Pieri’s rule (plus induction and lots of cancellations).
Giambelli’s Formula

For $r = 2$ and $\lambda = (a, b)$:

$$\det \begin{pmatrix} \sigma_a & \sigma_{a+1} \\ \sigma_{b-1} & \sigma_b \end{pmatrix} = \sigma_a \sigma_b - \sigma_{b-1} \sigma_{a+1}$$

$$= (\sigma_{a+b} + \sigma_{a+b-1,1} + \cdots + \sigma_{a,b})$$

$$- (\sigma_{a+b} + \cdots + \sigma_{a+1,b-1})$$

$$= \sigma_{a,b}.$$

For $r = 3$ and $\lambda = (a, b, c)$:

$$\det \begin{pmatrix} \sigma_a & \sigma_{a+1} & \sigma_{a+2} \\ \sigma_{b-1} & \sigma_b & \sigma_{b+1} \\ \sigma_{c-2} & \sigma_{c-1} & \sigma_c \end{pmatrix} = \sigma_a \sigma_{b,c} - \sigma_{b-1} \sigma_{a+1,c} + \sigma_{c-2} \sigma_{a+1,b+1}$$

$$= \cdots$$

$$= \sigma_{a,b,c}.$$
Back to the Motivating Problem

Question

Given four lines ℓ_1, \ldots, ℓ_4 in \mathbb{P}^3 in general position, how many lines intersect all four?

Now that we know Pieri’s rule, we can compute

$$
\sigma_1^4 = (\sigma_{2,0} + \sigma_{1,1})^2 = \sigma_{2,2} + \sigma_{2,2} = 2\sigma_{2,2}.
$$

Hence the answer is 2. We will sketch another proof that does not use Schubert calculus.

Lemma

Given a point p and two lines ℓ_1, ℓ_2 in \mathbb{P}^3 in general position. Then there exists a unique line through p that intersect both ℓ_1 and ℓ_2.

For the proof, pick a general plane H and projects ℓ_1, ℓ_2 onto it from p. Connect p with the point of intersection on H to get the desired line.
For each point $p \in \ell_3$, let M_p be the unique line passing through p and intersect both ℓ_1 and ℓ_2. Let $Q = \bigcup_p M_p$.

Key Fact

The lines M_p are disjoint, and Q is a quadric surface.

Thus, the fourth general line ℓ_4 will intersect Q at two points, corresponding to two lines M_p, M_q.

Figure: Figure 3.8 in “3264 and all that”
A Generalization

Question

Given four smooth curves C_1, \ldots, C_4 in \mathbb{P}^3 of degree d_1, \ldots, d_4 respectively and in general position, how many lines intersect all four curves?

The proof is similar to the previous problem. For a curve C in \mathbb{P}^3, let

$$\Gamma_C = \{ \ell \in \text{Gr}(2, 4) \mid \ell \cap C \neq \emptyset \}.$$

We can show that this is a subvariety of $\text{Gr}(2, 4)$ of codimension 1, so $[\Gamma_C] = d\sigma_1$ for some integer d. To determine d, we use the method of underdetermined coefficients. In other words, we multiply

$$[\Gamma_C]\sigma_{2,1} = d\sigma_1\sigma_{2,1} = d\sigma_{2,2}.$$

Hence d is the number of points in the intersection $\Gamma_C \cap \Omega_{2,1}(\mathcal{F})$, assuming it is transverse. This can be computed to be $\deg(C)$.
A Generalization

Question

Given four smooth curves C_1, \ldots, C_4 in \mathbb{P}^3 of degree d_1, \ldots, d_4 respectively and in general position, how many lines intersect all four curves?

Hence the intersection number is

$$\prod_i [\Gamma_{C_i}] = 2d_1 d_2 d_3 d_4.$$
For general partitions $\lambda, \mu \subset (k^{n-k})$, the product $\sigma_\lambda \cdot \sigma_\mu$ is a linear combination of $\{\sigma_\nu \mid |\nu| = |\lambda| + |\mu|\}$. In other words,

$$\sigma_\lambda \sigma_\mu = \sum_{|\nu| = |\lambda| + |\nu|} c^\nu_{\lambda\mu} \sigma_\nu$$

for some integers $c^\nu_{\lambda\mu}$.

Question

Is there an algorithm/combinatorial formula to compute these coefficient?

The answer to this question is the *Littlewood-Richardson rule*, and requires us to take a detour into the world of symmetric polynomials and Young tableaux.
References

- **Sara Billey.** “Tutorial on Schubert Varieties and Schubert Calculus”. In: (2013).
- **David Eisenbud and Joe Harris.** *3264 and all that A second course in algebraic geometry*. Cambridge University Press, 2016.