# Schubert Calculus Day 2: <br> Schubert classes and Schur polynomials 

Quang Dao

May 2021

## Table of Content

(1) Review of Day 1
(2) Ring Structure of $H^{*}(\operatorname{Gr}(k, n))$
(3) More Enumerative Geometry

## Review

Yesterday, we defined the Grassmannian $\operatorname{Gr}(k, n)$ which parametrizes $k$-subspaces of $n$-dim space. It has a stratification into Schubert cells

$$
\operatorname{Gr}(k, n)=\bigsqcup_{\lambda \subset\left(k^{n-k}\right)} \Omega_{\lambda}^{\circ}(\mathcal{F})
$$

where $\mathcal{F}$ is any complete flag. A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ determines a position $p_{\lambda}=\left(n-k+1-\lambda_{1}, n-k+2-\lambda_{2}, \ldots, n-\lambda_{k}\right)$ and

$$
\Omega_{\lambda}^{\circ}(\mathcal{F})=\left\{U \in \operatorname{Gr}(k, n) \mid \operatorname{dim}\left(U \cap F_{j}\right)=i \text { for } p_{i} \leqslant j<p_{i+1}\right\} .
$$

The cohomology ring $H^{*}(\operatorname{Gr}(k, n))$ is generated in even degrees by the class $\sigma_{\lambda}=\left[\Omega_{\lambda}(\mathcal{F})\right]$ of the Schubert varieties. Here $\sigma_{\lambda} \in H^{2|\lambda|}(\operatorname{Gr}(k, n))$ and is independent of the choice of flag.

## Schubert Varieties for $\operatorname{Gr}(2,4)$

Think of $\operatorname{Gr}(2,4)$ as parametrizing lines in $\mathbb{P}^{3}$. Fix a flag $p \subset \ell \subset H$ in $\mathbb{P}^{3}$.

$$
\left.\left.\begin{array}{rl}
\Omega_{(0,0)} & =\frac{\{\Lambda \mid \Lambda \cap H \neq \emptyset\}}{\left\{\left(\begin{array}{llll}
* & * & 1 & 0 \\
* & * & 0 & 1
\end{array}\right)\right\}} \\
& =\frac{\{\Lambda \mid \Lambda \cap \ell \neq \emptyset\}}{\Omega_{(1,0)}}
\end{array}=\begin{array}{llll}
* & 1 & \boxed{0} & 0 \\
* & 0 & * & 1
\end{array}\right)\right\}, ~\left(\begin{array}{llll} 
& \\
& =\frac{\{\Lambda \mid p \in \Lambda\}}{} \\
& \left.=\left\{\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & * & * & 1
\end{array}\right)\right\}
\end{array}\right.
$$

$$
\begin{aligned}
\Omega_{(1,1)} & =\{\Lambda \mid \Lambda \subset H\} \\
& =\left\{\left(\begin{array}{llll}
* & 1 & 0 & 0 \\
* & 0 & 1 & 0
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{(2,1)} & =\{\Lambda \mid p \in \Lambda \subset H\} \\
& =\left\{\left(\begin{array}{llll}
1 & \boxed{0} & 0 & \boxed{0} \\
0 & * & 1 & \overline{0}
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{(2,2)} & =\{\Lambda \mid \Lambda=\ell\} \\
& =\left\{\left(\begin{array}{llll}
1 & 0 & \boxed{0} & 0 \\
0 & 1 & \boxed{0} & \overline{0}
\end{array}\right)\right\}
\end{aligned}
$$

## From Cohomology to Point Counting

Let $X$ be a nonsingular projective variety over $\mathbb{C}$, and let $V, W$ be two subvarieties of $X$. Let $Z_{1}, \ldots, Z_{n}$ be the irreducible components of $V \cap W$.

## Question

What does the cup product $[V] \cdot[W]$ actually mean?
In "nice" situations, it will turn out to be exactly $\left[Z_{1}\right]+\cdots+\left[Z_{n}\right]$.

## Definition

Let $X, V, W, Z_{i}$ be as above. We call the intersection $V \cap W$ proper if $\operatorname{codim}\left(Z_{i}\right)=\operatorname{codim}(V)+\operatorname{codim}(W)$ for all $i$.
We call the intersection (generically) transverse if for each $i$, we have an open Zariski subset of $Z_{i}$ such that for all $z$ in that open subset,

$$
T_{z} Z_{i}=T_{z} V \cap T_{z} W
$$

## From Cohomology to Point Counting

## Theorem

If $V$ intersects $W$ transversely, then $[V] \cdot[W]=\left[Z_{1}\right]+\cdots+\left[Z_{n}\right]$. If their intersection is only proper, then $[V] \cdot[W]=m_{1}\left[Z_{1}\right]+\cdots+m_{n}\left[Z_{n}\right]$ for some multiplicities $m_{i}$.

Thus in our Schubert calculus problems, it is essential that the intersection of Schubert varieties are transverse.

## Theorem (Kleiman's transversality)

Suppose that an algebraic group $G$ acts transitively on a variety $X$ over $\mathbb{C}$, and $A \subset X$ is a subvariety.
a) If $B \subset X$ is another subvariety, then there is an open dense set of $g \in G$ such that $g A$ is generically transverse to $B$.
b) If $G$ is affine, then $[g A]=[A]$ in $H^{*}(X)$ for any $g \in G$.

## Intersection in Complementary Dimensions

Consider two partitions $\lambda, \mu \subset\left(k^{n-k}\right)$ with $|\lambda|+|\mu|=k(n-k)$. We call them complementary if $\lambda_{i}+\mu_{k+1-i}=n-k$ for all $1 \leqslant i \leqslant k$. In other words, $\lambda$ and $\mu$ complement each other in the $k \times(n-k)$ rectangle.

## Theorem

Let $\lambda$ and $\mu$ be as above, and $\mathcal{F}, \widetilde{\mathcal{F}}$ be opposite flags. Then the Schubert varieties $\Omega_{\lambda}(\mathcal{F})$ and $\Omega_{\mu}(\widetilde{\mathcal{F}})$ intersect transversely at a unique point if $\lambda_{i}+\mu_{k+1-i}=n-k$ for all $i$, and are disjoint otherwise.

## Corollary

We have

$$
\sigma_{\lambda} \cdot \sigma_{\mu}= \begin{cases}1 & \text { if } \lambda \text { and } \mu \text { are complementary } \\ 0 & \text { otherwise }\end{cases}
$$

## Intersection in Complementary Dimensions

## Proof.

For $U \in \Omega_{\lambda}(\mathcal{F}) \cap \Omega_{\mu}(\widetilde{\mathcal{F}})$, the dimension conditions are

$$
\left\{\begin{array}{l}
\operatorname{dim}\left(U \cap F_{n-k+i-\lambda_{i}}\right) \geqslant i \text { for all } i \\
\operatorname{dim}\left(U \cap \widetilde{F}_{n-k+i-\mu_{i}}\right) \geqslant i \text { for all } i
\end{array}\right.
$$

We then combine the first condition for $i$ and the second condition for $k+1-i$ to get

$$
\operatorname{dim}\left(U \cap F_{n-k+i-\lambda_{i}}\right)+\operatorname{dim}\left(U \cap \widetilde{F}_{n-k+(k+1-i)-\mu_{k+1-i}}\right) \geqslant k+1 .
$$

Since $\operatorname{dim}(U)=k$, we must have $\operatorname{dim}\left(F_{n-k+i-\lambda_{i}} \cap \widetilde{F}_{n+1-i-\mu_{k+1-i}}\right) \geqslant 1$. Because $\mathcal{F}, \widetilde{\mathcal{F}}$ are transverse flags, this translates to $\lambda_{i}+\mu_{k+1-i} \leqslant n-k$ for all $i$. Since $|\lambda|+|\mu|<k(n-k)$, equality must happen for all $i$.

## Intersection in Complementary Dimensions

What is the unique point of intersection?

$$
\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & * & 1 & 0
\end{array}\right)\right\} \cap \overline{\left\{\left(\begin{array}{cccc}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right)\right\}}=\left\{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\right\} .
$$

## Pieri's Rule

Given a partition $\lambda$, a horizontal strip of length $b$ for $\lambda$ is a way to attach $b$ more boxes to its Young diagram such that

- the result Young diagram is still a partition, and
- no two added boxes are in the same column.

If we call the resulting partition $\mu$, then this is equivalent to saying that $\mu \supset \lambda,|\mu|=|\lambda|+b$ and $\lambda_{i} \leqslant \mu_{i} \leqslant \lambda_{i-1}$ for all $i$.

## Theorem (Pieri's Rule)

For any $b \leqslant k$ and any partition $\lambda \subset\left(k^{n-k}\right)$, we have

$$
\sigma_{b} \cdot \sigma_{\lambda}=\sum_{\mu=\lambda+(\text { horizontal strip of length } b)}
$$

## Pieri's Rule

## Proof

It suffices to show that for any partition $\mu$ with $|\mu|=|\lambda|+b$, we have

$$
\sigma_{b} \sigma_{\lambda} \sigma_{\operatorname{comp}(\mu)}= \begin{cases}1 & \text { if } \mu=\lambda+(\text { horizontal strip of length } b) \\ 0 & \text { otherwise }\end{cases}
$$

Here comp $(\mu)$ denotes the complementary partition to $\mu$. This further reduces to showing that for a pair of opposite flags $\mathcal{F}, \widetilde{\mathcal{F}}$, and a general flag $\mathcal{V}, \Omega_{\lambda}(\mathcal{F}), \Omega_{b}(\mathcal{U})$ and $\Omega_{\operatorname{comp}(\mu)}(\widetilde{\mathcal{F}})$ intersect at exactly 1 point if $\lambda_{i} \leqslant \mu_{i} \leqslant \lambda_{i-1}$, and are disjoint otherwise.
Assume that their intersection is non-empty. Since $\Omega_{\lambda}(\mathcal{F}) \cap \Omega_{\operatorname{comp}(\mu)}(\widetilde{\mathcal{F}}) \neq \emptyset$, a similar reasoning to the previous Theorem shows that $\lambda_{i}+\operatorname{comp}(\mu)_{k+1-i} \leqslant n-k$ for all $i$. This is equivalent to $\lambda_{i} \leqslant \mu_{i}$.

## Pieri's Rule

## Proof (continued)

The harder direction is to show that $\mu_{i} \leqslant \lambda_{i-1}$. Recall that the Schubert conditions are

$$
\begin{gathered}
\Omega_{\lambda}(\mathcal{F})=\left\{\Lambda \mid \operatorname{dim}\left(\Lambda \cap F_{n-k+i-\lambda_{i}}\right) \geqslant i \text { for all } i\right\} \\
\Omega_{\operatorname{comp}(\mu)}(\widetilde{F})=\left\{\Lambda \mid \operatorname{dim}\left(\Lambda \cap \widetilde{F}_{i+\mu_{k+1-i}}\right) \geqslant i \text { for all } i .\right.
\end{gathered}
$$

Let $C_{i}=F_{n-k+i-\lambda_{i}} \cap \widetilde{F}_{k+1-i+\mu_{i}}$, so either $\operatorname{dim}\left(C_{i}\right)=\mu_{i}-\lambda_{i}+1$ for all $i$. Then the dimension conditions imply that if $\Lambda \in \Omega_{\lambda}(\mathcal{F}) \cap \Omega_{\operatorname{comp}(\mu)}(\widetilde{F})$, then $\Lambda \cap C_{i} \neq 0$ for all $i$. Let $C=\operatorname{span}\left(C_{1}, \ldots, C_{k}\right)$. A simple calculation shows that

$$
\operatorname{dim}(C) \leqslant \sum_{i=1}^{k} \operatorname{dim}\left(C_{i}\right)=\sum_{i=1}^{k}\left(c_{i}-a_{i}+1\right)=k+b
$$

## Pieri's Rule

## Proof (continued)

We now use the description of $\Omega_{b}(\mathcal{U})$ as the set of $k$-planes meeting a general subspace $U=U_{n-k+1-b}$. If $\Lambda$ is in the triple intersection then we need $C \cap U \neq \emptyset$. Since $U$ is general, we need $\operatorname{dim}(C) \geqslant k+b$. Hence equality must occur, which implies that $C_{1}, \ldots, C_{k}$ are linearly independent. It is then a short check to show that this implies $\mu_{i} \leqslant \lambda_{i-1}$ for all $i$.

## Giambelli's Formula

## Theorem

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \subset\left(k^{n-k}\right)$, we have

$$
\sigma_{\lambda}=\operatorname{det}\left(\sigma_{\lambda_{i}+j-i}\right)_{1 \leqslant i, j \leqslant r}
$$

Here $\sigma_{a}=0$ if $a<0$.

## Corollary

$H^{2 *}(\operatorname{Gr}(k, n))$ is generated by the Schubert classes $\sigma_{1}, \ldots, \sigma_{k}$.

This is a direct consequence of Pieri's rule (plus induction and lots of cancellations).

## Giambelli's Formula

For $r=2$ and $\lambda=(a, b)$ :

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
\sigma_{a} & \sigma_{a+1} \\
\sigma_{b-1} & \sigma_{b}
\end{array}\right)= & \sigma_{a} \sigma_{b}-\sigma_{b-1} \sigma_{a+1} \\
= & \left(\sigma_{a+b}+\sigma_{a+b-1,1}+\cdots+\sigma_{a, b}\right) \\
& -\left(\sigma_{a+b}+\cdots+\sigma_{a+1, b-1}\right) \\
= & \sigma_{a, b}
\end{aligned}
$$

For $r=3$ and $\lambda=(a, b, c)$ :

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
\sigma_{a} & \sigma_{a+1} & \sigma_{a+2} \\
\sigma_{b-1} & \sigma_{b} & \sigma_{b+1} \\
\sigma_{c-2} & \sigma_{c-1} & \sigma_{c}
\end{array}\right) & =\sigma_{a} \sigma_{b, c}-\sigma_{b-1} \sigma_{a+1, c}+\sigma_{c-2} \sigma_{a+1, b+1} \\
& =\ldots \\
& =\sigma_{a, b, c}
\end{aligned}
$$

## Back to the Motivating Problem

## Question

Given four lines $\ell_{1}, \ldots, \ell_{4}$ in $\mathbb{P}^{3}$ in general position, how many lines intersect all four?

Now that we know Pieri's rule, we can compute

$$
\sigma_{1}^{4}=\left(\sigma_{2,0}+\sigma_{1,1}\right)^{2}=\sigma_{2,2}+\sigma_{2,2}=2 \sigma_{2,2}
$$

Hence the answer is 2 . We will sketch another proof that does not use Schubert calculus.

## Lemma

Given a point $p$ and two lines $\ell_{1}, \ell_{2}$ in $\mathbb{P}^{3}$ in general position. Then there exists a unique line through $p$ that intersect both $\ell_{1}$ and $\ell_{2}$.

For the proof, pick a general plane $H$ and projects $\ell_{1}, \ell_{2}$ onto it from $p$. Connect $p$ with the point of intersection on $H$ to get the desired line.

## Lines Intersecting Four Other Lines



Figure: Figure 3.8 in "3264 and all that"

For each point $p \in \ell_{3}$, let $M_{p}$ be the unique line passing through $p$ and intersect both $\ell_{1}$ and $\ell_{2}$. Let $Q=\bigcup_{p} M_{p}$.

## Key Fact

The lines $M_{p}$ are disjoint, and $Q$ is a quadric surface.

Thus, the fourth general line $\ell_{4}$ will intersect $Q$ at two points, corresponding to two lines $M_{p}, M_{q}$.

## A Generalization

## Question

Given four smooth curves $C_{1}, \ldots, C_{4}$ in $\mathbb{P}^{3}$ of degree $d_{1}, \ldots, d_{4}$ respectively and in general position, how many lines intersect all four curves?

The proof is similar to the previous problem. For a curve $C$ in $\mathbb{P}^{3}$, let

$$
\Gamma_{C}=\{\ell \in \operatorname{Gr}(2,4) \mid \ell \cap C \neq \emptyset\} .
$$

We can show that this is a subvariety of $\operatorname{Gr}(2,4)$ of codimension 1 , so $\left[\Gamma_{C}\right]=d \sigma_{1}$ for some integer $d$. To determine $d$, we use the method of undertermined coefficients. In other words, we multiply

$$
\left[\Gamma_{C}\right] \sigma_{2,1}=d \sigma_{1} \sigma_{2,1}=d \sigma_{2,2}
$$

Hence $d$ is the number of points in the intersection $\Gamma_{C} \cap \Omega_{2,1}(\mathcal{F})$, assuming it is transverse. This can be computed to be $\operatorname{deg}(C)$.

## A Generalization

## Question

Given four smooth curves $C_{1}, \ldots, C_{4}$ in $\mathbb{P}^{3}$ of degree $d_{1}, \ldots, d_{4}$ respectively and in general position, how many lines intersect all four curves?

Hence the intersection number is

$$
\prod_{i}\left[\Gamma_{c_{i}}\right]=2 d_{1} d_{2} d_{3} d_{4}
$$

## Littlewood-Richardson Rule

For general partitions $\lambda, \mu \subset\left(k^{n-k}\right)$, the product $\sigma_{\lambda} \cdot \sigma_{\mu}$ is a linear combination of $\left\{\sigma_{\nu}| | \nu|=|\lambda|+|\mu|\}\right.$. In other words,

$$
\sigma_{\lambda} \sigma_{\mu}=\sum_{|,|\lambda|+|n u|} c_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

for some integers $c_{\lambda \mu}^{\nu}$.

## Question

Is there an algorithm/combinatorial formula to compute these coefficient?

The answer to this question is the Littlewood-Richardson rule, and requires us to take a detour into the world of symmetric polynomials and Young tableaux.

## References

显
Sara Billey. "Tutorial on Schubert Varieties and Schubert Calculus". In: (2013).
David Eisenbud and Joe Harris. 3264 and all that $A$ second course in algebraic geometry. Cambridge University Press, 2016.
William Fulton. Young tableaux: with applications to representation theory and geometry. 35. Cambridge University Press, 1997. Jake Levinson. "Schubert Calculus Mini-Course". In: (2014). Available at https://levjake.wordpress.com/2014/07/08/schubert-calculus-mini-course/.

